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We illustrate how the systematic inclusion of multi-spin correlations of the
quantum spin-lattice systems can be efficiently implemented within the frame-
work of the coupled-cluster method by examining the ground-state properties of
both the square-lattice and the frustrated triangular-lattice quantum antiferro-
magnets. The ground-state energy and the sublattice magnetization are
calculated for the square-lattice and triangular-lattice Heisenberg antiferro-
magnets, and our best estimates give values for the sublattice magnetization
which are 62% and 51% of the classical results for the square and triangular
lattices, respectively. We furthermore make a conjecture as to why previous
series expansion calculations have not indicated Néel-like long-range order for
the triangular-lattice Heisenberg antiferromagnet. We investigate the critical
behavior of the anisotropic systems by obtaining approximate values for the
positions of phase transition points.
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1. INTRODUCTION

The techniques now available in the field of ab initio quantum many-body
theory have become increasingly refined over the last decade or so. This is
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particularly true for what is nowadays recognized as one of the most power-
ful modern techniques, namely, the coupled-cluster method (CCM)."""*) The
results obtained from the CCM have become fully competitive with series
expansions, variational calculations and quantum Monte Carlo (QMC)
simulations (for the cases in which QMC may be applied).

Quantum magnets not only provide useful models of many physically
realizable magnetic systems but also serve as prototypical models of quan-
tum many-body systems. Their rich phase diagrams due to strong quantum
effects have naturally provided an excellent test-bed where the above-
mentioned methods can be applied and further refined. One example
demonstrating rich and initially unexpected behaviour is provided by the
Haldane conjecture,"” which states that the one-dimensional (1D) spin-1
Heisenberg antiferromagnet (HAF) possesses an excitation gap, in sharp
contrast to its spin-5 counterpart. This was surprising at the time because
conventional spin-wave theory predicts a gapless excitation spectrum regard-
less of spin magnitude. However, the Haldane conjecture has subsequently
been confirmed by numerical calculations.('") Moreover, in the aftermath of
the discovery of the superconducting cuprates, much effort has been
devoted to uncovering such subtle effects as spin-nematic, spin-Peierls and
chiral spin liquid orderings in two-dimensional {(2D) quantum antiferro-
magnets, among which the frustrated quantum antiferromagnets on the tri-
angular and the Kagomé lattices have recently attracted considerable
theoretical attention.('>72!

The CCM has been applied to various quantum magnets over the past
six years. The first application of the CCM to these systems was performed
by Roger and Hetherington,*® who obtained good results at low levels of
approximation for the ground-state energy of both the 1D chain and the
2D square-lattice HAF, and also for solid *He where ring exchanges of
nuclear spins are considered. Since then the CCM has been applied to the
isotropic (Heisenberg) and anisotropic HAF (or XXZ model) in 1D and
on the 2D square lattice, both for spin-12*2% gystems and higher-spin
systems;?"?® to the spin-1 Heisenberg-biquadratic model;®* and to such
Jrustrated spin models as the spin-} J,-J, (or Majumdar-Ghosh)
model®®3?) and the 2D triangular lattice HAF.®*3% [t has also been
applied to the spin-1 easy-plane ferromagnet.*® Among these, Bishop ef
al.®*?% not only put forth several systematic localised approximation
schemes to perform higher-order calculations yielding good results on the
ground-state sublattice magnetizations and approximate excitation spectra,
but also used an infinite-order, two-body SUB2 approximation scheme
to obtain evidence of a zero-temperature quantum phase transition. For
the 1D, spin-1 XXZ system it was found that the infinite-order, two-body
approximation produces a value for the position of the phase transition®
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of 4=0.3728. This result corresponds to the exactly known antiferro-
magnetic phase transition point at 4 =1, and although the value obtained
by the CCM is some way off the true result, it is a considerable achieve-
ment for such an ab initio technique to detect such a subtle (i.e., infinite
order) transition at which the energy and all of its finite-order derivatives
are continuous. By contrast, for the 1D, spin-1 XXZ system® a CCM
SUB2 critical value was obtained at 4 =0.7595. Both of these values may
be systematically improved considerably by the inclusion of the multi-spin
correlations which are taken into account in higher-order CCM approxi-
mations discussed below.

The systematic inclusion of spin-spin correlations based on a dimerised
state has also been made possible within the framework of the CCM, 3% 39
to study spin-Peierls ordering. This may provide a possible inroad to probe
more subtle topological order in the absence of sofid order, as in the case
of the chiral spin liquid.'*'” The quantitative description of such phases
remains one of the most challenging problems for modern microscopic
quantum many-body theory in general, and the CCM in particular.

More recently, attention has been given to extending the CCM
calculations to higher orders®® in the particular case of the XXZ model,
by using a localised approximation scheme, and by taking into account
multi-spin correlations on up to 10 contiguous lattice sites in 1D and on up
to 6 contiguous lattice sites in 2D. The ground-state energies, for example,
are found to be in excellent agreement ({i.e., within about 0.03%} with the
exact result in 1D, and with those obtained from spin-wave theory,®7)
series expansion analyses®® and QMC calculations®®*? in 2D. However,
it is fair to say that in 2D, in order to achieve the same accuracy on other
more interesting physical quantities such as the ground-state sublattice
magnetization and the excitation spectrum, and in order to further clarify
the nature of zero-temperature quantum phase transitions, the inclusion of
multi-spin correlations of still higher orders is clearly needed. Since the
extent of the task of determining the CCM equations and solving them
grows extremely rapidly with the approximation level, the development of
efficient algorithms for performing the CCM calculations has thus become
indispensable.**

The motivation of the present work is two-fold: (1) we wish to present
a framework in which high-order CCM calculations are possible via a com-
putational approach; and (2) we revisit the spin-} quantum antiferro-
magnets on both the square and the triangular lattices by utilising this
framework, thus allowing us to extend our previous successes in relation-
ship to these models. We state that these results indicate that the ground-
state wavefunctions of the square- and the triangular-lattice HAF both
possess Néel-like long-range order, and we furthermore make a conjecture
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as to why previous series expansion calculations have not indicated Néel-
like long-range order for the triangular-lattice HAF.

In this article we focus on the above two models in the regimes where
a Néel-like order represents the corresponding classical limit. The present
method, however, should be of general utility to quantum magnets where
a spin-Peierls order is relevant, for example.

A brief description of the contents of this article now follows. In
Section 2 we present a general description of the CCM methodology. The
ket- and bra-state formalisms are given, and the form of the ground-state
energy equation, along with the characteristic CCM similarity transform,
is described. The method is then applied to the square-lattice spin-3 XXZ
antiferromagnet and the triangular-lattice spin-1 anisotropic antiferro-
magnet'® in Sections 3 and 4 respectively. Our conclusions are given in
Section 5, where we reiterate the results presented here, and also discuss
briefly possibilities of further extending to even higher orders of
approximation. In Appendix A, the computational method used to deter-
mine our fundamental set of configurations within a localized, LSUBm
approximation scheme is described, and the derivation of the resulting
CCM equations is discussed in detail.

2. THE CCM FORMALISM FOR SPIN-LATTICE MODELS
Since detailed descriptions of the fundamentals of the CCM are
available in the literature,''® we only highlight the essential ingredients of

its application here. The exact ket and bra ground-state energy eigenvec-
tors, | ¥ > and { ¥|, of a many-body system described by a Hamiltonian H,

H|¥)=E |¥)>, <(PIH=ELY?| ()

are parametrized within the single-reference CCM as follows:

[¥) =e¥|D); S=3 5Cf
10 (2)
(P =(P| 8e~5, S=1+Y 5Cr
10

The single model or reference state |@) is required to have the property of
being a cyclic vector with respect to two well-defined Abelian subalgebras
of multi-configurational creation operators {C;} and their Hermitian-
adjoint destruction counterparts {C; =(C;")'}. Thus, |@) plays the role
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of a vacuum state with respect to a suitable set of (mutually commuting)
many-body creation operators {C;"},

Crl@y=0, I#0 (3)

with Cy =1, the identity operator. These operators are complete in the
many-body Hilbert (or Fock) space,

I=|PX<D|+ Y, C/[PX(P|Cy (4)

1#0

Also, the correlation operator S is decomposed entirely in terms of these
creation operators {C;}, which, when acting on the model state
({C} |®)>}), create excitations about the model state. We note that
although the manifest Hermiticity, ((&|T=|¥>/(¥| ¥)), is lost, the
intermediate normalization condition (¥ |¥>=(P|¥>=(D| P> =1
is explicitly imposed. The correlation coefficients {s,,35,} are regarded as
being independent variables, even though formally we have the relation,

4
(D} eSe’
(Ol S = s a0 (5)
(P|ee” D)
The full set {s,, §,} thus provides a complete description of the ground
state. For instance, an arbitrary operator 4 will have a ground-state expec-
tation value given as,

A= A1) =(D| 8e™54e’ |®) = Al{s;, 5;}) (6)

We note that the exponentiated form of the ground-state CCM
parametrization of Eq. (2) ensures the correct counting of the independent
and excited correlated many-body clusters with respect to |@> which are
present in the exact ground state |¥ ). It also ensures the exact incorpora-
tion of the Goldstone linked-cluster theorem, which itself guarantees the
size-extensivity of all relevant extensive physical quantities. One crucial
difference between the CCM parametrization of the ground state and those
used in spin-wave®”) and variational Monte Carlo calculations'*!) is that
although they all adopt an exponentiated form, the former (CCM) con-
tains spin-raising operators only.

The determination of the correlation coefficients {s, §,} is achieved by
taking appropriate projections onto the ground-state Schrddinger equa-
tions of Eq. (1). Equivalently, they may be determined variationally by
requiring the ground-state energy expectation functional H({s,,3,}),
defined as in Eq. (6), to be stationary with respect to variations in each of
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the (independent) variables of the full set. We thereby easily derive the
following coupled set of equations,

SH/35,=0=(P| C;e SHeS |®)> =0, I#0 (7)
OH[0s;=0=(D| Se"S[H,C;}1eS|®)=0, I#0 (8)

Equation (7) also shows that the ground-state energy at the stationary
point has the simple form

E,=E{s;})=(P| ¢~ He® |®) 9)

It is important to realize that this (bi-)variational formulation does not
lead to an upper bound for E, when the summations for S and § in Eq. (2)
are truncated, due to the lack of exact Hermiticity when such approxima-
tions are made. However, it is clear that the important Hellmann-Feynman
theorem is preserved in all such approximations.

We also note that Eq. (7) represents a coupled set of nonlinear poly-
nomial equations for the c-number correlation coefficients {s,}. The nested
commutator expansion of the similarity-transformed Hamiltonian,

Hse‘SHeS=H+[H,S]+%[[H,S],S]+--- (10)

together with the fact that all of the individual components of S in the sum
in Eq. (2) commute with one another, imply that each element of § in
Eq. (2) is linked directly to the Hamiltonian in each of the terms in
Eq. (10). Thus, each of the coupled equations (7) is of linked cluster type.
Furthermore, each of these equations is of finite length when expanded,
since the otherwise infinite series of Eq. (10) will always terminate at a
finite order, provided (as is usually the case) that each term in the second-
quantised form of the Hamiltonian H contains a finite number of single-
body destruction operators, defined with respect to the reference (vacuum)
state |®)>. Therefore, the CCM parametrization naturally leads to a
workable scheme which can be efficiently implemented computationally. It
is also important to note that at the heart of the CCM lies a similarity
transformation, in contrast with the unitary transformation in a standard
variational formulation in which the bra state ( ¥| is simply taken as the
explicit Hermitian adjoint of [¥ ).

In the following sections we describe CCM results for anisotropic
Heisenberg antiferromagnets on both the square and triangular lattices,
and the reader should note that these results were obtained using a new
computational approach which is described in Appendix A.
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3. SPIN-} XXZ ANTIFERROMAGNET ON THE
2D SQUARE LATTICE

In this section we shall consider the spin-} XXZ model on the infinite
square lattice. The XXZ Hamiltonian is given by,

H= Y [sis]+sls}+4sis7] (11)
< >

where the sum on (i, j) runs over all nearest-neighbour pairs and counts
each pair only once. The square-lattice XXZ model has no exact solution,
unlike its 1D counterpart, although approximate analytical and numerical
calculations have been performed. To put later CCM calculations in con-
text, we note that the XXZ model has three regimes: an Ising-like phase
characterized by non-zero Néel order; a planar-like phase in which the
spins in the ground-state wavefunction are believed to lie in the xy plane;
and a ferromagnetic phase. A Monte Carlo study of the 2D anisotropic
Heisenberg model was performed by Barnes et al.** They observed that
the staggered magnetization in the z-direction is non-zero for 4> 1, but
then appears to become zero below 4 = 1. They therefore conclude that the
critical point is probably very near to this point. In contrast to this Monte
Carlo calculation, Kubo and Kishi have used sum rules to investigate
the ground state of this system. They state that the ground state possesses
an off-diagonal long-range order (LRO) akin to that of the XY-like state
at small anisotropy, 0.0 <4 <0.13. Also, for 4 > 1.78 they observe that the
system demonstrates non-zero Ising-like LRO. At 4= —1 there is a first-
order phase transition to the ferromagnetic phase for this model.

The isotropic Heisenberg point has been extensively studied using
various approximate methods, and so shall be used as a test case for the
CCM results discussed later in this section. Runge™? has performed the
most accurate Monte Carlo simulation to date for the square-lattice,
isotropic HAF. This provides a value for the ground-state energy per spin
of —0.66934(4), and a value for the sublattice magnetization which is
61.5% +0.5% of the classical value. In comparison, linear spin-wave
theory (LSWT)®” gives a value of —0.658 for the ground-state energy,
and a value for the sublattice magnetization which is 60.6 % of the classical
value.

A. The Model State

We begin the CCM treatment of this spin system by choosing a
suitable model state |@) (for a particular regime), such that all other
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possible spin configurations may be obtained by the application of linear
combinations of products of spin-raising operators to this state. In the
Ising-like regime, characterized by non-zero Néel order, a natural choice
for the model state is the Néel state with spins lying along the z axis. (For
clarity, this state will be referred to as the z-axis Néel model state
throughout this article.) We note however that this model state is not the
best choice for all values of 4 because the ground-state wavefunction of the
XXZ model in the region —1 <4 <1 is believed to contain only spins
which lie in the xy plane. In this regime, we again use the classical Néel
state, but this time with spins lying on the x axis. (This state will be
referred to as the planar model state throughout this article.) Hence, we see
that even for the same spin model and lattice a different choice of model
state may be preferable, depending on the regime that we are investigating.

We shall consider the Ising-like regime first, and, so that spins on
either sublattice may be treated equivalently, we peform a rotation of the
local axes of the up-pointing spins by 180° about the y axis. The transfor-
mation is described by,

§F = —s%, s? = s?, §7—= —§7 (12)

The model state now appears mathematically to consist of purely down-
pointing spins which is precisely given by Eq. (A1) of Appendix A. In terms
of the spin raising and lowering operators s =s§ +is} the Hamiltonian
may be written in these local axes as,

1 N
H=—3 <.Z> [s;ts) 48757 +24sis7] (13)
LJ

For the planar model state, we again rotate the local axes of these
spins on the separate sublattices such that all spins appear to be lie along
the negative z direction which is again given by Eq. (Al). This is achieved
by rotating the axes of the left-pointing spins (i.e., those pointing along the
negative x direction) in the planar model state by 90° about the y axis, and
by rotating the axes of the right-pointing spins (i.e., those pointing along
the positive x direction) by 270° about the y axis. (The positive z-axis is
defined to point directly upwards, and the positive x-axis is defined to
point directly to the right.) Hence the transformation of the local axes of
the left-pointing spins is described by,

— §7, 7= 57, §7— —s (14)
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and the transformation of the local axes of the right-pointing spins is
described by,

s —7 57— 57, 52

- §F (15)

The transformed Hamiltonian for the planar model state is now given by,

l N
H= ~a Z A+ DT s +s7s7 )+ (A= D)sF s +5,787) +4s757]
<& > (16)

In the remainder of this section, the power and flexibility of our new
formalism 1is illustrated by focussing primarily on the planar model state
applied to the XXZ model on the square lattice. Note however that equiv-
alent calculations have been undertaken for the z-axis Néel model state,
and that a general explanation is presented here only. A more detailed
explanation of CCM calculations that deal with both the ground-state
properties and the excitation spectrum using the new formalism for the
XXZ model based on this model state will be presented in ret. 42.

B. Fundamental Excitation Configurations: Lattice Animals

The “localised” LSUBm approximation scheme defined in Appendix A is
used in this section, and the first step of our modular solution is therefore
to obtain the set of fundamental configurations for a given approximation
scheme by utilising appropriate lattice symmetries. Another constructive
way to define the LSUBm scheme used here for the square lattice is to con-
sider a right-angled bounding triangle containing m lattice points along the
sides parallel to the axes (see Fig. | for a diagram of this construction
where the bounding triangle for LSUB4 is shown). All possible fundamen-
tal configurations for the LSUBm approximation are then confined by this
bounding triangle. This comes about because it is easy to show that all
connected configurations of size m (or the lattice animals of size m) are
constrained to lie within or on this bounding triangle. Furthermore, as first
shown by Lunnon,**’ the introduction of this bounding triangle greatly
simplifies the recursive procedure of growing a connected cluster of given
size. The disconnected configurations for the LSUB#1 scheme are then con-
structed by successively considering all “subsets” of each member of the
fundamental set of connected configurations, and all possible disconnected
configurations are thereby generated. (The “subsets” here refer to all inde-
pendent configurations which are formed by removing one or more spins
from these connected configurations.)
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(a) (b) (c) (d)

(H) (8) (h)

(i) Q)

Fig. 1. The square lattice LSUB4 bounding triangle is shown in this ligurc along with the
LSUB4 lattice animals, illustrated by diagrams (a)-{c). The fundamental LSUB4 configura-
tions for the planar model state are given by diagrams (a)-(j), and the fundamental configura-
tions for the z-axis Néel model state form a subset of them, namely, all diagrams except (c),
(i), and (j). The centres of the shaded squares mark the relative positions of the sites of the
square lattice on which the spins are flipped with respect to the model state.

To be specific, for the square lattice, there are four rotational opera-
tions, (0°, 90°, 180°, 270°), and four reflections, (along the x and y axes,
and along the lines x =y and x= —y), which preserve the symmetries of
both the lattice and the Hamiltonian. Moreover, the Hamiltonian of
Eq. (16), which is defined with respect to the planar model state, contains
only even products of spin-flip operators and a single term containing two
s* operators. Repeated application of this Hamiltonian to this model state
yields the ground state (assuming that this model state is not orthogonal
to it). Therefore the ground state will have an even numbers of spin flips
with respect to this model state, and so we restrict the LSUBm approxima-
tions to contain even numbers of spin-raising operators in the ket-state
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correlation operator, S, only for this planar model state. As an example, in
Fig. 1 we show all 10 fundamental configurations retained in the LSUB4
approximation when the planar model state is used in the CCM calculation.

Further reduction in the number of fundamental configurations can be
made when the z-axis Néel model state is used in the CCM calculations.
This comes about because, although the total uniform magnetisation
s5=> ;57 (where s7 is defined with respect to a global quantisation axis
and the sum on the index i runs over all lattice sites) is always a good
quantum number independent of the model state used, only the z-axis Néel
model state is an eigenstate of the total uniform magnetisation s%. In con-
trast, the planar model state is not an eigenstate of the total uniform
magnetization s7. Therefore, for the z-axis model state case one can
explicitly conserve s3. by restricting the fundamental configurations to those
which produce no change in s with respect to the z-axis Néel model state.
This restriction, for example, reduces the number of the fundamental con-
figurations retained in the LSUB4 approximation to 7 if the z-axis Néel
model state is employed in the CCM calculations, and see Fig. 1. We
tabulate the number of of fundamental configurations up to the LSUBS
level of approximation for both model states in Table I. Note that only the
CCM calculations based on the z-axis Néel model state are actually carried
out up to LSUBS approximation in this article.

Table I. Results Obtained for the Spin-1/2 XXZ Model on the 2D Square
Lattice Using CCM LSUBm Approximations (m=2, 4, 6, 8}¢

m Ny, Ne, EJN(4=1) M* (4=1) 4, 4, A4,

2 1(1+0) 1(1+0)  -064833 08414  — —  —

4 10(6+4)  T(5+2)  —066366 07648 —1249 1.648 0577

6 131 (41+490) 75(29+46)  —066700 07273  —1083 1286 07631

8 2793 1287 —066817 07048 ? 708429
(410 +2383) (259 + 1028)

x — - ~066968 062 - - -

® Here Ny denotes the number of fundamental configurations for the planar model state,
which are further decomposed in terms of connected and disconnected ones respectively,
and Np, denotes the number of fundamental configurations for the z-axis Néel model state.
The ground-state energy per spin, E,/N, and the sublattice magnetization, M *, at the
isotropic Heisenberg point (4 =1) are shown, as well as extrapolated results in the limit
m— oo, Various critical anisotropy parameters are also given. 4., and 4. indicate the
LSUBm critical points for the planar model state corresponding to the ferromagnetic and
antiferromagnetic phase transitions. 4, indicates the critical point for the z-axis Néel model
state corresponding to the antiferromagnetic phase transition. Note that there are no ter-
minating points in the LSUB2 approximation.
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C. Similarity-transformed Hamiltonian and CCM
Ket-State Equations

In order to solve the Schrodinger equation of Eq. (1), we shall specifi-
cally utilise the Hamiltonian of Eq. (16), although a comparable analysis
can also be performed for Eq. (13). The expression for the ket-state correla-
tion operator of Eq. (A2) is now used to write the similarity-transformed
Hamiltonian, A, of Eq. (10) in terms of the operators F, and G,,,,. Further-
more, we subdivide A into three categories as discussed in Appendix A to
clarify the problem of finding the CCM equations, where H |®) =
e SHeS |®> = (H, + A, + H,) |®), such that:

1
{~(ka+Fka)+Z(A— l)(Ff,,+F,2()}s,js,’;
1
—g(AH)Z{l+2Gim+4kaFka+Fian} sEst (17)
kp

| 1
HZ:Z Z {Fms':; +stl-: +5(1 _A)(Fmslj +st;:)}
kp

+%u+1>Z{<2ka+Fka)<Fms; + Fisi)} (18)
kp
1
Hy= =g Y A1+ (44 V(G + FicF,)} (19
kp

Note that & runs over all lattice sites and that m is given by m=k + p, such
that p covers all nearest neighbours to k. Hence we see from Eq. (19) that
the ground-state energy of the XXZ model for the planar model state is
given by,

o

&

N

[2x,(4+1)+1] (20)

ool

where x,={k, k+p] (see Appendix A) represents all nearest-neighbour,
two-body correlation coefficients in Eq. (A2) which are equivalent under
the translational and rotational symmetries of the lattice, and z represents
the lattice coordination number (i.e., the number of nearest neighbours to
a given site), namely z =4 for the square lattice considered here. Note that
the ground-state energy of Eq. (20) is exact in the sense that both the exact
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expansion for § and any non-trivial approximation of it will always
produce this expression.

D. Results

1. Ground-State Energy. The ground-state energy for the planar
model state is illustrated by Fig. 2, and we can sce that these results appear
to be in good agreement with Monte Carlo results."** The highest
approximation that has been attempted for the planar model state is the
LSUB6 approximation, which contains 131 fundamental configurations
and gives a ground-state energy per spin of —0.66700 at the Heisenberg
point. For the z-axis Néel model state, due to the reduced number of
fundamental configurations, we were able to solve the LSUBS approxima-
tion, which contains 1287 fundamental configurations and gives an energy
per spin of —0.66817 at 4= 1. Hence, by utilising the new formalism we
have increased the number of fundamental configurations used in a CCM
calculation for the z-axis Néel model state by over an order of magnitude
compared to the previous best (ie., LSUB6'*” which contains 75 con-
figurations). Table I summarises the information regarding numbers of
configurations and ground-state energies at 4=1. Note that the calcula-
tions for both model states at the Heisenberg point give exactly the same
results at equivalent approximation levels, and so only one figure for the

-0.50
-0.60 |
E/N  .0.70 ]
----- LSUB2 AN
-0.80 | |--—- LSuB4 Yo
LSUB6 :
x Monte Carlo 0
-0.90

-1.5 -1.0 -0.5 0.0 05 1.0 15 20
A

Fig. 2. Results for the CCM ground-state energy of the XXZ model on the 2D square lattice
using the planar model state, compared to the Monte Carlo resuits of ref. 44. LSUBm critical
points 4, and 4, are indicated by the boxes.
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ground-state energy is quoted in Table 1. The reason for the equivalence is
that the Hamiltonians of Eqs. (13) and (16) become identical at 4 =1.
Also, all of the correlation coefficients for configurations at a given LSUBm
level contained in the planar model state case but not contained in the
z-axis Néel model state case become identically zero at 4=1.

In order to compare our results to other approximate calculations,
described at the beginning of Sec. 3, we perform a “naive” extrapolation of
our LSUBm ground-state energies at the isotropic Heisenberg point. Note
that we shall not seek to justify this particular form for the extrapolation
in this article, but we simply note that it has been found useful pre-
viously®® and that it will be discussed more fully elsewhere.*) As in ref. 26
we plot these energies against 1/m? and extrapolate these in the limit
m — oo, We obtain an extrapolated value for the ground-state energy of
—0.66968 which compares favourably to the result of Runge“® of
—0.66934(4).

The results for the z-axis Néel model state are found to be less
accurate than those using the planar model state in the region —1 <4 <1.
Conversely, for 4> 1, the results based on the z-axis Néel model state
become the more accurate of the two sets of calculations. This therefore
vindicates our decision to use two separate model states in order to
investigate the Ising- and planar-like phases of this model.

Beyond certain values of the anisotropy parameter (called critical
points) it is found that there is no physically reasonable solution to the
LSUBm CCM equations for m=4. This characteristic breakdown of the
solution to the CCM equations has previously been related to a phase trans-
ition of the real system.?”” We also note that the second derivative of the
ground-state energy may be obtained analytically and it is found that this
quantity diverges at the LSUBm critical points. Table I illustrates two sets
of estimates for the critical points for the XXZ model based on the planar
model state, 4, and 4., corresponding to the ferromagnetic and antiferro-
magnetic phase transition points respectively. Encouragingly, the critical
points 4, corresponding to the ferromagnetic phase transition become
closer to 4= —1 with increasingly refined approximation level. Table I
also includes the estimates 4, for the critical points obtained for the z-axis
Néel model state corresponding to the antiferromagnetic phase transition
point. Note that LSUBm results based on these two model states always
bound the Heisenberg point, at which the true antiferromagnetic phase
transition is believed to lie, and also appear to converge with increasing m.

2. Sublattice Magnetization. We now consider a simple order
parameter called the sublattice magnetization, M+ = —2{s*), which is
defined in terms of the local, rotated spin axes. Hence M * is given by,
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—2 M 2
Mt = Z ('I’IS ¥ >=1-— Z (d?lSst,j |@>
NO i=1 NO k=1
AVF
=1-2 3% nin!)%x, (21)

where the index / runs over all N, sites of a sublattice, and N again
indicates the total number of configurations for a given LSUBm approxi-
mation level. Note that %, and x,, respectively, are bra- and ket-state
correlation coefficients associated with the rth fundamental configuration,
described in Appendix A, and that », is the number of spins in this con-
figuration. From Eq. (21) we can see that in order to obtain a numerical
value for the sublattice magnetization we must first know the values of
both the ket- and bra-state correlation coefficients. The manner in which
we determine these coefficients is described in Appendix A. Our results for
the XXZ model using the planar model state are shown in Fig. 3, and we
note that these results appear to converge to a non-zero value as one
increases the approximation level. Hence our results indicate non-zero
Neéel-type long-range order in the xy plane for the square lattice in the
planar regime. Table I also summarises the results for the sublattice
magnetization at the Heisenberg point. Note that results based on both
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Fig. 3. Results for the CCM sublattice magnetization of the XXZ model on the 2D square

lattice using the planar model state. CCM results indicate non-zero, in-plane long-range order
in the region —l <4< 1.
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model states are again found to be identical at this point and so only a
single number is quoted in Table L.

Again, in order to compare our results to other approximate calcu-
lations, we perform a “naive” extrapolation of our LSUBm sublattice
magnetizations at the isotropic Heisenberg point. We plot the LSUBm sub-
lattice magnetization against 1/m and extrapolate these in the limit m — co.
This particular choice of extrapolation has been found useful previously, ¢
and will be discussed more fully elsewhere.*?) We obtain an extrapolated
value for the sublattice magnetization of 0.62 which again compares very
favourably to the result of Runge®“® of 0.615.

In summary, the new CCM formalism has been used in order to
calculate estimates of the ground-state energy and sublattice magnetization
for the 2D XXZ model, and these results are found to be in good agreement
with other approximate calculations. The highest-order approximation for
the z-axis Néel model state has been extended to LSUBS level using the
new formalism, which is an increase of over an order of magnitude in the
number of fundamental configurations used in the previous-highest LSUB6
calculation. Also, the positions of the phase transition points obtained by
the CCM, using both model states, are fully consistent with the known
behaviour for this model. Finally, the results presented here also support
the idea that this model contains both Ising- and planar-like phases.

4. SPIN-] TRIANGULAR-LATTICE ANTIFERROMAGNET

Unlike the square-lattice spin-; HAF where various calculations
including extensive quantum QMC simulations®>*? strongly support the
existence of a Néel ordering with a reduced magnetic moment of about
62% of its classical value (See Sec. 3), the three-sublattice ordering for the
corresponding triangular case is much less clear. For instance, early varia-
tional wavefunction calculations*? that include long-ranged two-spin and
nearest-neighbour three-spin correlations support an ordered ground state
with a value of the sublattice magnetization, M * =0.68, ie., as large as
68% of the classical value. Based on this antiferromagnetic correlated trial
wavefunction, fixed-node Green function Monte Carlo (GFMC) simula-
tions were recently performed on lattices of up to 324 sites.“*9 These
yielded a similar magnetization, M * x 0.60.49 However, series expansion
calculations,** utilising up to 11th-order terms in an Ising-like anisotropy
parameter suggest that the triangular HAF may be at, or at least close to
(with the magnetisation being extrapolated to a value of M * x0.20), the
critical point of losing magnetic order. This scenario has received support
from exact diagonalisation calculations on lattices of up to 36 sites."*”’ Yet
another careful analysis® of the same data from exact diagonalisations in
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terms of a consistent description of the symmetries and dynamics of the
quasi-degenerate joint states indicates the presence of sublattice magnetic
order with the magnetization value, M * = 0.50, which is also consistent
with second-order spin-wave calculations.?" Clearly, further work is still
needed to account for the discrepancy, and to provide a more definite and
converged result.

Hence, in this section we therefore further apply the CCM to the spin-3
triangular HAF and focus on model-specific details of the algorithm imple-
mentation discussed in Sec. 2. Compared with earlier applications of the
CCM on the triangular HAF which only include two-spin (though long-
ranged) correlations,®® the current calculations, which take into account
all multi-spin correlations on up to six contiguous sites, have obtained
various ground-state properties that are now found to be fully competitive
with those obtained from the above-mentioned methods.

A. Model Hamiltonian and Model State

The spin-} triangular HAF is described by the antiferromagnetic-
coupling Hamiltonian,

H=Y 53 (22)

where §; denotes the spin-} operator at site i on the infinite triangular lat-
tice. The sum in Eq. (22) on {i, j)> runs over all nearest-neighbour pairs
and counts each pair once. We note that the operators in Eq. (22) are
defined in terms of some global spin quantisation axes referring to all spins,
whereas henceforth we shall consistently employ a notation in which the
spin operators are described in terms of local (Néel-like) quantisation axes
for each of the three sublattices (A, B, and C) of the triangular lattice. The
classical ground state of Eq. (22) is the Néel-like state where all spins on
each sublattice are separately aligned (all in the xz-plane, say). The spins
on sublattice A are oriented along the negative z-axis, and spins on sublat-
tices B and C are oriented at +120° and —120°, respectively, with respect
to the spins on sublattice A. In order both to facilitate the extension of the
isotropic Heisenberg antiferromagnet to include an Ising-like anisotropy
first introduced by Singh and Huse!"®’ and to make a suitable choice of the
CCM model state, we perform the following spin-rotation transformations.
Specifically, we leave the spin axes on sublattice A unchanged, and we
rotate about the y-axis the spin axes on sublattices B and C by —120° and
+120° respectively,

822/90/1-2-23
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We may rewrite Eq. (22) in terms of spins defined in these local quantisation
axes for the triangular lattice with a further introduction of an anisotropy
parameter A for the non-Ising-like pieces,

1 32
H= 3 { —Esf.sj.+\/‘T(sf.sj+ +5787 =8 si—s787)
=T

A 31
+§(s,.+sj_+si_sj+)—§(s,.+sj+ +s,.“sj_)} (24)

where A=1 corresponds to the isotropic Heisenberg Hamiltonian of
Eq. (22). We note that the summation in Eq. (24) again runs over nearest-
neighbour bonds, but now also with a directionality indicated by (i — j,
which goes from A to B, B to C, and C to A. When A =0, the Hamiltonian
in Eq. (24) describes the usual classical Ising system with a unique ground-
state which is simply the fully aligned (“ferromagnetic”) configuration in
the local spin coordinates described above. We choose this state as the
uncorrelated CCM model state |@) which is, of course, precisely given by
Eq. (A1) of Appendix A.

B. Fundamental Excitation Configurations: Lattice Animals

Unlike the square lattice case discussed in Sec. 3B where all lattice
point-group symmetries are employed to produce symmetry-distinct con-
figurations, care must be exercised here since not all of the lattice point-
group symmetries leave the lattice-spin Hamiltonian invariant. The
Hamiltonian of Eq. (24) (or the CCM model state) explicitly breaks some
of the lattice symmetries because of the presence of bond-directionality in
the Hamiltonian. Thus only 6 (instead of the full 12) point-group sym-
metries should be used in the symmetry reduction. These are, specifically,
three rotational operations (0°, 120°, and 240°) together with three reflec-
tions about the lattice axes (i.e., lines that coincide with the edges of the
triangular lattice). For example, the three configurations (a), (b), and (c)
shown in Fig. 4 are symmetry equivalent, as are the three configurations
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Fig. 4. The LSUBS bounding triangle and symmetry-related correlation configurations for
the triangular lattice. The centres of the shaded hexagons mark the relative position of the
sites of the triangular lattice on which the spins are flipped with respect to the model state.
See text for details.

(d), (e), and (f). However, the former are regarded as inequivalent to the
latter in the context of the present spin-lattice Hamiltonian problem. For
the purpose of comparison with the case in, say, percolation problems, and
for the sake of concreteness, let us consider the connected configurations of
size 6. If all 12 point-group symmetries were used, we would have obtained
82 symmetry-inequivalent configurations as shown in Fig. 5, which are
further classified into two groups: 17 in group group A and 65 in group B.
The configurations in group A are of higher symmetries than those in
group B, and thus do not lead to new symmetry-inequivalent configura-
tions when only 6 point-group symmetries must be used in the symmetry
reduction as discussed above. Each configuration in group B, however,
results in another new symmetry-inequivalent configuration. Therefore, the
total number of symmetry-inequivalent connected configurations of size 6
is 147 for the present spin-Hamiltonian problem. The set of symmetry-
inequivalent configurations (connected and disconnected) thereby forms
the set of fundamental configurations. We tabulate the number of
fundamental configurations up to the LSUB7 level of approximation in
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Fig. 5. All 82 lattice animals of size 6 on a triangular lattice after symmetry reduction
including translational and 12 point-group symmetry operations (see text for details). The
centres of the hexagons mark the relative position of the sites of the triangular lattice on
which the spins are flipped with respect to the model state. See text for a discussion of
group A and group B diagrams.
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Table Il. Results Obtained for the Spin-1/2 Triangular-Lattice HAF Using
CCM LSUBm Approximations (m=2,3,4,5,6,7)

m N E /N (4=1) M* (2=1) 7 L,
2 2(2+0) —-0.50290 0.8578

3 8 (6+2) —0.51911 0.8045 —0.86 5.47
4 30 (16 +24) —0.53427 0.7273 —0.65 2.20
5 143 (53 +90) —0.53869 0.6958 —0.60 1.98
6 758 (200 + 558) —0.54290 0.6561 —0.55 1.77
7 4427 (837 4+ 3590) 7 7 ? "
x — —0.5505 0.51

¢ Here N, denotes the number of fundamental configurations which are further decomposed
in terms of connected and disconnected ones respectively. Note that only CCM calculations
up to the LSUBG level of approximations are performed in this article. The ground-state
energy per spin, E, /N, and the sublattice magnetization, M *. at the isotropic Heisenberg
point (1 =1) are shown for cach LSUBm approximation, as well as extrapolated results in
the limit m — . The terminating anisotropy parameters, 4., and 4., which correspond
respectively to a phase transition at A= —1{ and another believed'®) 1o be near =1, are
also given for cach LSUBm approximation. Note that there is no terminating point in the
LSUB2 approximation.

Table II. Note that only CCM computations up to the LSUB6 level of
approximation are actually carried out in this article.

C. Similarity-Transformed Hamiltonian and CCM
Ket-State Equations

Using Eq. (AS) given in Appendix A, we can straightforwardly carry
out the similarity transformation of the Hamiltonian given by Eq. (24); the
resulting terms are further classified into three categories for reasons dis-
cussed in Appendix A, ie., H|®> =e SHeS |®) =(H,+ H,+ H,) |®), as
indicated below:

A~ 1

=g T4 -2Gun+ R
kp
34

_‘2—‘+\/§A(Fk_pm)(l +2ka+Fka)}S]:-S;

1 A 32
+ZZ{_E(F12n+FI%)_3)‘Gim_6}‘kaFka_?Flz(Frzn}sl:-‘sl:l—
kp (25)
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Here the summation over & runs over all triangular lattice sites, while the
summation over p is over the three directed nearest-neighbour vectors that
point from A to B, B to C, and C to A as required by the explicit bond
directionality in the Hamiltonian given by Eq. (24), and the index
m=k + p. Each fundamental configuration for a given LSUBm approxima-
tion is then pattern-matched to each of the total 35 terms in the above
similarity-transformed Hamiltonian following the procedure outlined in
Appendix A to generate the entire set of coupled CCM ket-state equations.
The CCM ket-state equations may then be solved by the Newton-Raphson
method for nonlinear equations. Specifically, we start from the point 1 =0,
at which we know the exact solution where all the correlation coefficients
are zero. We then use this known solution as an initial input in solving the
CCM equations for a slightly increased nonzero anisotropy A. This proce-
dure is carried out recursively to obtain the numerical results reported
below.

D. Results

1. Ground-State Energy. In Fig. 6 we show the ground-state
energy per spin E, /N as a function of the anisotropy parameter A for
various LSUBm approximations. The corresponding values at the isotropic
Heisenberg point are also tabulated in Table II. The highest-order calcula-
tion, LSUB6, which consists of 758 independent fundamental correlation
coeflicients, yields E,/N = —0.54290. This value should be compared with
the value —0.5445 extrapolated from finite-cluster diagonalisations of up to
36-spin clusters,''® and the value —0.5431+0.0001 from a recent QMC
simulation.“®
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Fig. 6. Results for the CCM ground-state energy for the triangular HAF. LSUBm critical
points 4, and 4., are indicated by the boxes.

As in Sec. 3D, we plot the LSUBm energies against 1/m* and
extrapolate these in the limit m — oc. We obtain an extrapolated value for
the ground-state energy per spin of —0.5505 which is in good agreement
with the series expansion calculations of Singh and Huse!'>’ who obtained
a value for the ground-state energy per spin of —0.551. Compared with the
corresponding classical value of —0.375, it is safe to say that the LSUB6
CCM calculation captures at least 99 % of the quantum corrections.

To make further contact with the highest-order series expansion
known to date,"'>’ we have computed the perturbative solution of £, /N in
terms of the anisotropy parameter A. In Table III we tabulate the expan-
sion coefficients from the LSUB6 approximation, together with the corre-
sponding results from exact series expansions.''>’ We note that the LSUB6
approximation reproduces the exact series expansion up to the 6th order.
This result lends further strong support to the conjecture that the LSUBm
approximation reproduces the exact series expansion to the same mth
order.*® Moreover, the fact that the corresponding values of several of the
higher-order expansion coefficients from both the CCM LSUBG6 pertur-
bative solution and the exact series expansion remain close to each other
shows that the exponential parametrization of the CCM with the inclusion
of multi-spin correlations up to certain order also captures the dominant
contributions to correlations of a few higher orders in the series expansions.
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Table Ill. Expansion Coefficients in Powers of A up to the 15th Order for the

Ground-State Energy per Spin, £,/N, and the Sublattice Magnetization for

the Anisotropic Spin-1/2 Triangular-Lattice HAF Obtained from the CCM
Equations in the LSUB6 Approximation“

Order LSUB6: E /N Exact: E,/N LSUB6: M+ Exact: M ¥
0 —0.3750000 —0.3750000 1 1
1 0.0000000 0.0000000 0 0
2 —0.1687500 —0.1687500 —-0.27 —-0.27
3 0.0337500 0.0337500 0.108 0.108
4 —0.0443371 —0.0443371 —0.2726916 —0.2726916
5 0.0204259 0.0204259 0.1717951 0.1717951
6 —0.0283291 —0.0283291 —0.3315263 —0.3315263
7 0.0311703 0.0315349 0.4060277 04110737
8 -0.0357291 —0.0476598 —0.5331858 —0.7382203
9 0.0541263 0.0685087 0.8894023 1.1781303
10 —0.0771681 —0.1025446 —1.3927395 —2.0109889
11 0.1294578 0.1565522 24179612 3.4012839
12 ~0.1848858 ? —4.0426184 ?
13 0.2857225 ? 6.8086538 ?
14 —0.4463496 ? —11.488761 ?
15 0.7021061 ? 19.388053 ?

9 The highest-order known exact series expansions up to the 11th order obtained by Singh
and Huse"® are also included for comparison.

As already displayed in Fig. 6, the LSUBm ground-state energy curve
for m >3 terminates at lower and upper critical values of the anisotropy,
A, and 1, respectively, beyond which no physical solution of the CCM
ket-state equations exists. We have also tabulated A, and 4, for various
LSUBm approximations in Table II. Although the CCM based on the
model state given in Eq. (Al) of Appendix A with the three-sublattice
magnetic ordering is bound to break down in the region of the anisotropy
parameter space where the true ground-state wavefunction possesses a dif-
ferent symmetry from that of the model state, it has been strongly
argued®® 29 that the terminating points may correspond to the critical
points of a phase transition. Again the derivatives of the ground-state
energy with respect to the anisotropy parameter may be analytically deter-
mined, and these derivatives of second and higher orders are found to
diverge at the corresponding terminating anisotropy parameters 4. and 4.,
Note that the lower terminating point 4, clearly converges to a value of
about —0.5, as argued by Singh and Huse.*® However, the upper ter-
minating point 1., as tabulated in Table II, remains considerably larger
than the value of unity which was obtained via Padé¢ analysis of the series
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expansion by Singh and Huse.""> Higher orders of approximation are
needed to clarify this disagreement, though it is possible that the upper ter-
minating point is highly singular and so convergence may be very slow.
The detailed behaviour of the sublattice magnetization near 2. is par-
ticularly suggestive with regard to this point, as discussed below. Also,
further work is necessary in order to determine the singularity exponents of
the ground-state energy at the two critical points.

2. Sublattice Magnetization. Once the ket- and bra-state
correlation coefficients are known it is possible to evaluate the sublattice
magnetization, M+ = —2{s"), which is similarly defined by Eq. (21)
except that the subscript i now covers all N, sites on the sublattice A, one
of the three sublattices. In Table II we also tabulate the sublattice
magnetization at the Heisenberg point for the various LSUBwm approxima-
tions. The highest-order LSUB6 approximation gives give rise to a value of
0.6561. The extrapolated LSUBm value for the sublattice magnetization is
0.51, which now brings our results fully into line with those from the most
careful analysis''® to date of those from finite-size diagonalisation results
and the second-order spin-wave calculations. We tend to believe that the
corresponding result of M ™ = 0.60 from the fixed-node GFMC simula-
tion*®’ is likely to be too high, probably because the trial wavefunction on
which it is based contains only two-and three-spin correlations.

The divergence in {s°) seen in Fig. 7 near the critical points is a
natural consequence of the approximate nature of the calculation. As we
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Fig. 7. Results for the CCM ground-state sublattice magnetization for the triangular HAF.
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approach a critical point for a given LSUBm approximation, one of the
CCM correlation coefficients x, becomes very large. The contribution to
{s*) from this coefficient also becomes very large and so the sublattice
magnetization diverges. The puzzling “upturn” of M ™ observed for the
LSUBS and the LSUB6 approximations near their respective upper critical
points 1. remains elusive to us at the present, although this behaviour is
undoubtably correlated with the slow and erratic convergence of this anti-
ferromagnetic critical point.

Again to make comparisons with the highest-order series expansion
results, we perform a series expansion of the sublattice magnetization for a
given LSUBm order of approximation, and results for LSUB6 are shown
in Table 1II. We may also perform an Euler transformation and then
re-sum these series, exactly as has been performed by Singh and Huse!'>
using the exact series which is known to 11th order. We use exactly the
same form of the Euler transform as these authors in order to compare
their results with those of our CCM LSUBm calculations. The results are
shown in Fig. 8, where the sublattice magnetization is plotted against %
(r is the series expansion order). We can see that the LSUBG6 series expan-
sion results are converged up to approximately r ~%° ~ 0.3, (ie., up to order

~11), and also that each LSUBm plot tends to the results obtained
directly via direct evaluation of the CCM equations in the limit r~ % — 0.
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Fig. 8. The resummed series expansions of the sublattice magnetization plotted against r %3

where r is the series order. The Euler transform was used with a value of a=1/3, and the
resulting series resummed. The CCM LSUBm resummed values for the sublattice magnetiza-
tion converge to the analytical results shown in Table II as r ®5— 0, and the exact series of
Singh and Huse''> is also shown.
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However, we also see that if only a limited order of series terms are used—
say fewer than about fifteen terms—then it is very easy to extrapolate to an
incorrect LSUBm value, for the higher values of m, due to the “oscillation”
which develops in the re-summed value of the sublattice magnetization as
m increases. This presents the possibility that the re-summed exact series
expansion results of Singh and Huse (also plotted in Fig. 8) were obtained
at too low an order to observe this oscillation, which we believe might per-
sist in the exact series limit, thus producing an incorrect extrapolation of
the sublattice magnetization. Hence, from these results, and that of our
extrapolated LSUBm results, we believe that the ground state of the tri-
angular lattice HAF does indeed possess Néel-like long-range order.

In summary, compared with earlier applications of the CCM on the
triangular HAF which have already revealed interesting oscillatory
behaviour in long-ranged two-spin correlations,®® the present high-order
CCM calculations (with a systematic inclusion of multi-spin correlations
on up to six contiguous lattice sites) have now obtained results for the
ground-state energy and sublattice magnetization that are fully competitive
with those obtained from other methods, and which are among the best
available. Further detailed analysis of the large number of ket-state coef-
ficients already obtained for the LSUB6 approximation, in order to achieve
a better understanding of the nodal surface of the ground-state wavefunc-
tion, may provide a more microscopic justification of, and an extension to,
the above-mentioned variational wavefunction. This may in turn lead to a
better trial wavefunction for QMC simulations.

V. CONCLUSIONS AND OUTLOOK

In conclusion to this article, we restate our results which indicate that
both the square-lattice and triangular-lattice HAFs contain Néel-like long-
range order, and we also discuss our conjecture concerning previous series
expansion calculations for the triangular-lattice HAF., We also briefly dis-
cuss the extension of our high-order calculations to further orders of
approximation, and consider other systems to which the new formalism
may be applied.

The success of our new formalism has meant that we are now able to
attain much higher orders of approximation than ever before. For example,
for the square-lattice HAF we have solved the LSUBS8 approximation
which contains over an order of magnitude more fundamental configura-
tions than the previous best of LSUB6. These increases in the order of
approximation have also resulted in increased accuracy of the ground-state
energy and sublattice magnetization, even for the “raw” LSUBm results.
A naive extrapolation of the sequence of LSUBm results yields values for



354 Zeng et al.

the sublattice magnetization of the quantum systems which contain 62%
and 51% of the classical ordering for the square and triangular lattices
respectively. Hence our CCM results are now fully consistent with the
known behaviour of these models from the best of other approximate
techniques.

We also make a conjecture concerning previous series expansion
calculations for the triangular-lattice HAF. We have performed series
expansion calculations of the ground-state energy and sublattice magne-
tization, and shown that our LSUBm results perfectly reproduce up to
mth-order coefficients compared to those of the exact series expansions.
Furthermore, for the triangular lattice HAF we find that the exact coef-
ficients for orders greater than m are closely followed by the CCM coef-
ficients, We performed an Euler transform and then re-summed the series,
and observed that there is a characteristic oscillation about the result
obtained via direct evaluation of the CCM equations in the re-summed
value of the sublattice magnetization, plotted against r~%° where r is the
series expansion order. We believe that this oscillation might persist in the
exact solution, and that if this is the case then previous exact series expan-
sion calculations have not detected this oscillation because one needs to go
to at least 15th order in the series before it becomes apparent. Thus, in this
case, any extrapolation using a series of less than (approximately) [5th
order would yield a much lower value for the sublattice magnetization than
the true value.

The present results would be further clarified by the inclusion of even
higher orders of approximation, and one possible way of achieving this
might be to obtain and solve the CCM equations in parallel. We believe
that the CCM is well suited to parallelisation as each CCM equation could
be implemented on a separate processor.

We have already mentioned that our results using the new CCM for-
malism are now fully competitive with QMC and other results, and we
have seen that our approach is easily generalisable to other systems.
Possible future systems to which we may apply the new formalism include
the valence-bond solids,®"*® systems with higher spin,®® 2% and models
with electronic degrees of freedom such as the Hubbard model.®" The
nature of the ground states of new and interesting materials or spin models
might be quickly and easily investigated by specifying the Hamiltonian,
lattice and spin number, and development of the code might therefore lead
to a powerful test-bench for various new ideas. The future also holds the
possibility of very high-order calculations, which will increase our knowl-
edge both of these systems and also of the CCM. With the inclusion of very
high orders of approximation it is also hoped that the asymptotic nature
of the CCM ground-state energies, sublattice magnetizations and phase
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transitions will become clear. In conclusion, we believe that the application
of the CCM to the lattice spin systems is yielding excellent and interesting
results, though there are still many avenues of fruitful and challenging
research to be investigated.

APPENDIX A: COMPUTATIONAL ASPECTS OF THE CCM
FOR SPIN-LATTICE MODELS

a. Ket-State CCM Equations

In this Appendix, a new way to implement the CCM formalism is
presented which lends itself readily to high-order calculations. The com-
putational aspects involved in the implementation of this new formalism
are also described. The description here is kept as general as possible, and
the model-specific details are discussed in the text of Secs. 3 and 4.

To make our assumptions clear, we restrict ourselves to spin-3 quan-
tum antiferromagnets in the regimes where the corresponding classical limit
is described by a generalized Néel-like ordering, i.e., where all spins on each
sublattice are separately aligned in the coordinates of a global quantisation
axis. However, it is a simple task (see Secs. 3 and 4 for details) to introduce
a different local quantisation axis on each sublattice by a suitable spin-
rotation transformation, such that the above Néel-like state becomes a fully
aligned (“ferromagnetic”) configuration in the local spin coordinates. This
“ferromagnetic” state, |@>, is chosen as the uncorrelated CCM model
state, where, in the local axes, all spins point along the respective negative
z-axis,

N
|@> =& || >,; in the local quantization axes (Al)

i=1

The correlation operator S is then decomposed wholly in terms of sums of
products of single spin-raising operators, s;f =s§ + is}, again defined with
respect to the local quantisation axes,

S=[i st +Lih]stsy+ - (A2)
where [i,], [7,/,] and so on stand for the corresponding (symmetric) spin-
correlation coefficients (recall {s,} in Sec. 2A) specified by the sets of site
indices, {i,}, {/,, i} and so on, on the regular lattices under consideration.
Implicit summations over repeated indices are also assumed. According to
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Eq. (7), the spin-correlation coefficients in Eq. (A2) are to be determined
by a set of CCM nonlinear equations:

0={P| szsj;...sj;e*SHeS‘cm (A3)

where s; s, -+ s; is the Hermitian conjugate of the corresponding multi-
+ o+ +
Tsr.oog

spin correlation string s; s o

In practice we clearly need an approximation scheme to truncate the
expansion of S in Eq. (A2) to some finite or infinite subset of the full set
of multi-spin configurations {I}. The three most commonly used trunca-
tion methods up till now are: {1) the SUB#n scheme, in which all correla-
tions involving only » or fewer spins are retained, however far separated on
the lattice; (2) the simpler SUB#-m sub-approximation, where only SUBn
correlations spanning a range of no more than m adjacent lattice sites are
retained; and (3) the systematic local LSUBm scheme, which includes all
multi-spin correlations over all possible distinct locales on the lattice
defined by m or fewer contiguous sites. We note that only the last approxi-
mation scheme is adopted throughout this article.

The first step in the practical implementation of the LSUBm CCM is
to enumerate all of the distinct multi-spin configurations or correlated
clusters, which we shall henceforth call fundamental configurations,
{i1, iy, in} With n<m, retained in the LSUBm approximation. It should
be noted that the multi-spin configurations that are related by Hamiltonian
symmetries, translational, rotational and reflectional alike, are counted as
one single distinct configuration. Such a correlated cluster can be either a
connected cluster of size m {also called a “lattice animal” or “polyomino™)
or a subset of it (connected or disconnected). Although the asymptotic
behaviour of the number of lattice animals on a regular lattice remains an
open combinatorial question, efficient algorithms for enumerating lattice
animals up to sizes of about 20 have been developed in various fields
including percolation and cell growth problems.?

The second step in our modular implementation, namely, generating
the corresponding set of CCM equations, is what we will focus on in the
remainder of this Appendix. Equation (A3) reveals that there are essentially
two computational aspects involved in obtaining all possible non-zero con-
tributions to its right-hand side. The first is to calculate the similarity-
transformed Hamiltonian which then acts on the model state, and the
second is to select terms of the similarity-transformed Hamiltonian that
match exactly the string of spin-lowering operators represented by the set
of site indices {j,, j,, jar}- The first aspect is intrinsically related to the
noncommutative nature of quantum spin operators, and the second to the
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geometric considerations of the lattice on which the Hamiltonian is defined.
We address these two aspects in more detail below.

The computation of the similarity-transformed Hamiltonian, H =
e ~SHeS, which acts on the model state |@) can be performed straightfor-
wardly by making use of the relations s~ |@) =0 and s* |@) = —1 |D).
The goal here is to compietely eliminate s* and s—, and thus retain the
creation operators only, by utilising the commutation relations of the spin
operators, namely, [s% s*]=+s* and [s7,sT]= —2s* This greatly
simplifies the matching problem in-generating the CCM equations as dis-
cussed below. To this end, we note that the similarity-transformed single-
spin operators can be expressed as:

ot — ot 8z — + 60— — o~ 2+
Se=sg, Si=si+Fsy, $p =5 —2F s —(F)' s (A4)

where F, =3, I[ki,---i;_,] s,T ---S,T - Furthermore, the commutation

relations between the spin operators and the F, operators can also be
written in the following compact forms,

(s, Foudl =G syt [s7. Fnl= —2G 5%
(55, (Fu)?1 =2F,Gimsi . [555 (F)?) = =2 Giw)® 88 — 4F,, G s,
(AS)
where Gy, =3, i/ — D[ kmiy iy 5] s;7 -5, . Unlike in previous equa-

tions, repeated indices in Eqs. (A4) and (AS) do not imply summations.
Clearly both F and G operators contain creation operators only. Consider
then a typical two-spin interaction term, s; s, , for example, as contained
in most spin-lattice Hamiltonians (see Secs. 3 and 4 for a full description of
the quantum spin Hamiltonians actually studied in this article). It is easy
to prove the following relation:

$T8 10> = (2G> 57 55 + 4 FonGrms i 5+ (FO2 (F)? s st ) |0

—(2G i s + FUl F)? st +(F)? Fst + 26, Fesy ) | @)
+(Gy,, + F F,) [P (A6)

In Eq. (A6), the resulting terms from §, § are classified into three
categories as explicitly containing both s and s}, either s or s, and
neither s, nor s, respectively. The reason for such a classification
becomes clear when we consider the second aspect, namely, generating the
CCM equations. Thus, the first case is the simplest of all three to deal with,

since the site indices of all terms in the case, including both & and m,
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are completely fixed up to permutations by the rarget set {j, jp. s jas}
according to Eq. (A3). Although, unlike in the first case, only one of k and
m in the second case must liec within the set {j,, j;....., ju}. the search for
k or m in the matching problem can be easily performed once m or k is
fixed. This comes about since the two-spin interactions with which we
mostly deal are usually short-ranged. Typical examples are the nearest-
neighbour interactions where & and m are simply the nearest neighbours as
in the two models considered in this article. By contrast, neither index &
nor index m in the last case must belong to the set { j|, j,... ja}. Nonethe-
less, for the LSUBm approximation scheme used here, both k& and m must
lie within a finite set of indices for which {j,, j,,... ja} is a subset.

To be more specific, let us consider the term in Eq. (A6), F, F,,, which
can be written explicitly as:

Fkazz Z(ll + )L+ l)[kilu-i,l][mn1 ---n,z] SIT ---s,.:s:l -"S:;Z
L

(A7)

where summation over repeated indices is implicitly assumed. Therefore,
generating the part of the CCM equations due to this particular term F F,,
amounts to determining all possible non-zero contributions to (®|s;" -
s; FiF,, |®) according to Eq. (A7) This is achieved by partitioning the
target set { /i, joo jagf into two subsets {i;---i;} and {n;---n,} with
I, +1,= M, followed by a search for the appropriate & and m in a nearby
region that includes {i,---i,} and {n,.--n,} respectively, such that both
correlation coefficients [ki,---i;] and [mn,---n,] are contained within
the (symmetry-related) set of fundamental configurations retained by a
given LSUBm approximation. Unlike earlier work®>2*2% where the maxi-
mum number of fundamental configurations was limited to 100 or so, the
present approach based on partition completely eliminates the costly pro-
cedure implemented previously for avoiding double occupancies of spin-}
objects, and thus reduces the CPU usage a great deal. This optimal
implementation becomes possible because all of the terms (e.g., F,F,,) in
the similarity-transformed Hamiltonian (H) and, more importantly, their
explicit structures are completely specified by the seemingly tedious refor-
mulation of H in terms of F,, F,,, and G,,, operators. The CCM ket-state
equations so obtained can then be solved by the standard Newton-
Raphson method.

b. Bra-State CCM Equations

According to Eq. (6) of Sec. 2, it is necessary to obtain both the ket-
state correlation coefficients {s,} and the bra-state correlation coefficients
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{3,} in order to compute a general ground-state physical quantity such as
the sublattice magnetization. The task of generating the bra-state CCM
equations {see Eq. (8)) turns out to be simple. Firstly, note that this set of
coupled equations is linear in {§,}, as is evident in Eq. (8); secondly, a simple
equality, 62H/65,0s,;=3?H/ds,85,, demonstrates that the bra-state equa-
tions can be readily generated from the already obtained CCM ket-state
equations by appropriate differentiations.

Similarly, in the context of spin-} quantum antiferromagnets, the S
operator is in general decomposed entirely in terms of annihilation
operators which are again defined with respect to local quantisation axes:

S=1+0i sy +Lih sy sy + - (A8)
where [E], [iTi;] and so on denote the corresponding bra-state spin-
correlation coefficients specified by the sets of site indices {i,}, {/;, i} and
so on, which is the analogue of Eq. (A2). We note that we use the LSUBm
approximation scheme here and that the coefficients [/,], [i,i,], and so
on, and [, ], [,i,], and so on, may be mapped onto sets {Z,} and {Z,}
respectively, where r labels the independent or fundamental configurations:
i.c, only those that are inequivalent under the lattice symmetries (namely,
translations, rotations, and reflections) of the Hamiltonian and under per-
mutations of the indices. The sets {2,} and {Z,} are thus defined to count
the independent correlation coefficients associated with each fundamental
configuration once and once only. Generally speaking there will be Nv,(n,)!
equivalent configurations on the lattice associated with each fundamental
configuration, where n, is the number of sites in the rth configuration and
(n,)! is the combinatoric factor associated with permutations of the n,
indices, the factor N arises from the translations, and the factor v, is the
replication factor of the rth configuration associated with the point sym-
metry group (or sub-group) of transformations on the lattice which
preserve the Hamiltonian. In particular, we need only to consider one of
the Nv,(n,)! equivalent sets of equations (A3) associated with each inde-
pendent coefficient Z,. It is furthermore found very useful to introduce the
notation that x,=%, and %,=(n,!)v,Z, where r is the index of the rth
fundamental configuration,

Now let §H/6%, = P,(x,, X,,.., A) =0 denote the rth ket-state CCM
equation, which is given in terms of the ket-state correlation coefficients
and 4, which stands for other parameters included in the Hamiltonian such
as anisotropy, for example. Consequently H may now be written in terms
of P(x,, x,,.., 4) and the bra-state correlation coefficients, {%,} as:

N
H=Py(x|, X550, )+ Y, %, P X1, X5,y 4) (A9)

r=1

822/90/1-2-24
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where Po(x, X3,..., 4) denotes the zeroth-order CCM term, i.c., the ground-
state energy expression, and N, is the number of fundamental configura-
tions retained for a given LSUBm approximation level. Therefore, the sth
bra-state equation may now be rewritten in terms of X, and P(x,, X,,.., 4):

OPo(X 1y Xaseus A)
Ox

Ng "
FOP(Xs Xy A
£ 3 g XX ) N, (ALD)

K r=1 axs

These linear equations for the coefficients {%,} may now be solved by using
a standard decomposition technique, such as the LU decomposition
method, once the ket-state correlation coefficients {x,} are known.

We note that similar algorithms have also been successfully implemented
to study the excitation spectra. This will be the subject of a future publi-
cation.*?)
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